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Probabilistic composite micromechanics methods are~ developed that
simulate expected uncertainties in unidirectional fiber compasite
properties. These methods are in the form of computational procedures
using Monte Carlo simulation. The variables in which uncertainties are
accounted for include constituent and woid volume ratios, constituent
elastic properties and strengths, and fiber misalignment. A
graphite/epoxy unidirectional composite (ply) is studied to demonstrate
fiber conmposite material property variations induced by random changes
expected at the material micro level. Regression results are presented
to show the relative correlation between predictor and response
variables in the study. These computational procedures make possible a
formal description of anticipated random processes at the intraply

level, and the related effects of these on composite properties.
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CHAPTER I
INTRODUCTION

fAA. Background

The diverse requirements of recent engineering applications have
motivated designers to explore specialized structural and material
systems. Ceramic materials, for example, have several attractive
structural properties, such as their high stiffness/weight ratios, and
low variation of stiffness and strength over wide ranges of
environmental conditions. f significant disadvantage inherent to
brittle structural materials is their vulnerability to failure die to
cracks propagating from flaws. The increased probability of a flaw
occurring in a material as the volume increases leads to bulk strengths
which are a fraction of the theoretical strength of the material. The
size effect on material strength (Ref. 1) can be explained by the
“weakest link" concept. Griffith ( Ref. 2) reasoned that very small
solids, for example wires or fibers, might be expected to be stronger
than large ones, due to the additional ‘restriction on the size of the
flaws. In the limit, a single line of molecules must possess the

theoretical molecular tensile strength of a material. A consequence of




the size effect on strength was the development of fiber composite
materials which consist of thin, strong fibers bound together by a
ductile mtrix. The advantages of fine, strong fibers can explain the
current trend toward increased use of fiber composite materials in
demanding aerospace applications.

Properties of a composite laminate depend on the properties of the
constituent materials, their distribution, and orientation. Laminates
are composed of layers of unidirectionally reinforced plies (laminae).
The lamina is typically considered the basic unit of material in a
conposite structural analysis, which requires knowledge of the material
properties of each individual lamina and its geometric orientation. The
branch of composite mechanics that predicts ply material properties
based on the properties, concentration, and orientation of its
constituents is known as composite micromechanics, and frequently
incorporates the traditional Mechanics of Materials assunptions. The
desired laminate is created by stacking of plies in specific directions.
The integration of ply properties to yield laminate properties is called
laminate theory. Laminate variables such as ply orientation and
stacking sequence can be tailored to yield a laminate with the desired
material properties. Thus, the laminated composite is a suitable
material for component design.

Analysis of fiber conmposite structures is currently performed using
a variety of computer codes. From the original codes based on classical
micromechanics and laminate theory, recent codes (Ref. 3,4) have been

developed which incorporate the current state of the art. Complete
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wechanical, thermal, and hygral properties are calculated, and can be
used to compute response. Advanced failure criteria are used to

calculate composite strengths. Environmental effects are also

quantified. The usefulness of these codes has been demonstrated by

comparison with experimental and finite element results (Ref. 5,6).

The analytical capability of many codes is limited by the
deterministic nature of the computations. Specifically, fixed values
for constituent material properties, fabrication process variables (i.e.
constituent volume ratios) and internal geometry must be used as input.
Hovever, random variations in these parameters are not:only expected,
but easily observed experimentally. (See Fig. 1)

The analysis of conposite structures requires reliable predictive
models for material properties and strengths. However, the prediction
efforts have been conplicated by inherent scatter in experimental data.
Since uncertainties in the constituent properties, fabrication
variables, and internal geometry would lead to uncertainties in the

measured composite properties, the question arises:

How mxh of the “statistical” scatter of experimentally observed
composite properties can be explained by reasonable statistical
distribution of input parameters in composite micromechanics and
laminate theory predictive models?

The increasing use of probabilistic methods in structural mechanics has
been shown to provide a nore realistic depiction of structural response
due to load varjations. (Ref. 7) The recognition that material

parameters are characterized by a spectra of values ( that is, are
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statistical in nature ) rather than by a unique set of values, points to

probabilistic methods as a logical analysis approach.



Fig. 1- Photomicrograph of Graphite/Epoxy cross section
showing variation in fiber content. (Ref. 19)



B. Purpose

The aim of this thesis is to develop a computational ocapability to
sinulate the probabilistic variations in the wmechanical behavior of
‘unidirectional fiber composites. The Monte Carlo method is used to
simulate a variety of random processes, to quantify fiber conposite
material variations induced by random changes in composite fiber
alignment, constituent properties, and fabrication process variables.
This random process description is an attenpt to nore accurately predict
the behavior of manufactured materials, which inherently include these
random variations. The characterization of fiber reinforced conposites
through simulation of local nonumiformities provides an economical

alternative to experinentation to measure mterial properties.



C. Formulation of the Model

The model cowmonly used in characterizing fiber composites is based
on the calculation of properties of the basic unmit of an orthotropic
.ply. The layup geometry is then used in laminate equations to calculate
composite properites (See Figs. 2a, 2b). In this work, however, the
basic unit is taken as the sub-ply, which consists of only one
fiber-matrix level in the material. Micromechanics theory is used to
calculate the properties of the assumed orthotropic sub-ply, each with
randomly distributed fabrication variables and material properties.
Distributed fiber directions, due to possible misalignment within the
ply, are then used in the laminate equations to calculate ply
properties. This substructuring of the composite ply represents a novel
attenpt at characterization of fiber conposite material properties based
on probabilistically distributed constituent properties, individual
fiber misalignment, and fabrication process variables (See Figs. 3a,3b).

This formulation is particularly well suited to the probabilistic
description of fiber conmposite material properties. Since the
micromechanics and laminate equations can be used to calculate ply
properties at any number of points in a ply, a tractable finite element
structural analysis based only on simple distributional assumptions for
physical parameter variations can be performed. This model supplies a
rational procedure for composite material property assessment, because
it treats the material as the result of a series of random processes

which occur at the intraply level.
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D. Method of Investigation

1. Brief Description of ICAN

The Integrated Composite Analyzer (ICAN) is a conmputer program for
'conprehensive linear analysis of multilevel fiber composite structures.
The program contains the essential features required to effectively
design structural components made from fiber composites. It now
represents the culmination of research conducted since the early 1970's,
at the National feronautics and Space Administration (NASA) Lewis
Research Center (LERC), to develop and code reliable composite mechanics
theories. This user friendly, publicly available code incorporates

theories for

1. conventional laminate analysis

2. intraply and interply hybrid conposites

3. hygral, thermal, mechanical properties and response

4. ply stress-strain influence coeff icients

5. microstresses and microstress inf luence coefficients

6. stress concentration factors around a circular hole

7. predictions of delamination locations around a circular hole
8. Poisson’s ratio mismatch details near a straight free edge
9. free edge interlaminar stresses

10. laminate failure stresses

11. rnorml and transverse shear stresses

12. explicit specification of matrix-rich interply layers

13. finite element material cards for NASTRAN, MARC

A detailed description of ICAN can be found in Reference (3). The
ICAN code and documentation are available through COSMIC, the Computer
Software Managenment and Information Center, Suite 112, Barrow Hall,

Athens GA, 30602.



2, Summary of Variables

10

The variables studied in this work can be separated into two

categories. The independent variables to be simulated using random

‘sanpling consist of the following (see Fig. 4a for fiber coordinate

system):

Geometry:

fiber orientation angle

Fabrication variables:

fiber volume ratio
void volume ratio

Fiber properties

longitudinal elastic modulus
transverse elastic mndulus
shear modulus, 1-2 plane
shear modulus, 2-3 plane
fiber tensile strength

f iber compressive strength

Matrix properties

elastic modulus

matrix tensile strength
matrix conpressive strength
matrix shear strength

(THETA)

(FVR)
(VWR)

(EFP1) .
(EFP2)
(G‘PIZ)
(CFP23)
(SF'PT)
(SFPC)

(EP)

(StPT)
(stPc)
(smPs)

The dependent variables to be calculated using ICAN consist of the

following ply properties, measured about the material axes (see Fig.

4b):

normal modulus in 1-{ direction
norml modulus in 2-2 direction

shear modulus in 1-2 plane

(EC11)
(EC22)
(ECi2)

Poisson’s ratio for strains in 2 direction induced

by stresses in 1 direction

(NuC12)

Poisson’s ratio for strains in 1 direction induced

by stresses in 2 direction
Coefficients of thermal expansion

in 1-1 direction
in 2-2 direction
coupling coefficient

(NUC21)

(CTE11)
(cTE22)
(CTE12)
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(a) fiber . (b) material

Fig. 4- Coordinate Systems <

Material system detils:
Ny g Cards; 10 entries
rard

Ply detalls: Ny cards;
eight entries per card,

Booleans fNve cardy
five entries,

] @t ard;
tnngnmu:kks "

Thie card:
one carg 30 charsciers.

Fig. 5- Order of ICAN input data cards
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Ply strengths in material directions

longitudinal tensile SCHXT
longitudinal comwpressive {SCXXC}
transverse tensile SCYYT
transverse conmpressive ISCYYC
in—plane shear (scxys)

The descriptions above should be consulted periodically for the

definitions of variables that henceforth will be referred to

synbolically.



13

3.Monte Carlo Methods

Complicated stochastic processes can be simulated by a variety of
numerical methods generally referred to as Monte Carlo methods (Ref. 8).
'The term refers to that branch of experimental mathematics concerned
with experiments on random nubers. Since the advent of high speed
computers, they have found extensive use in nost fields of science and
engineering, in analyzing many physical processes of a statistical
nature, or where direct experinentation is not feasible. In general,
they can be economically used to achieve a level of precision between 90
and 95 percent.

A Monte Carlo experiment refers to the procedure of randomly
assigning a value to an independent random variable in a chosen model,
and abserving the dependent variable at the conclusion of the process
being modeled. A Monte Carlo procedure is composed of n such
independent experiments. UWhen n is sufficiently large, the observations
will yield, by virtue of the laws of large numbers, a statistically
meaningful description of the physical problem.

The form of Monte Carlo used in this study is as follows:

1. Define the system mndel by assuming

a. model regression function

b. method of error incorporation

c. probability distributions of all errors (for all independent
variables)

d. any equations used to model the phenomena of interest

2, Use the cowmputer and random sampling techniques to select
values of the independent variables.

3. Calculate dependent (output) variables using the prescribed
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equations.
Estimate regression parameters for the assumed nodel.

Replicate the experiment, each tiwme with a new set of input
values.
Use appropriate statistical wethods to calculate properties of

the distribution of parameter estimmtes.
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E. Brief Summry of Results

A ply made from the AS-Graphite /IMHS epoxy composite system is
studied. The nonte carlo scheme is used to generate a nunber of
‘response results, which are analyzed in graphical and numerical form, to
supply a random process description of comwposite ply elastic constants,
thermal expansion coefficients, and strengths. Histogram and
distribution plots of results for assumed narrow and wide variations in
input properties are compared with a deterministic base case for an
aligned ply. The figures demonstrate the range of values that response
variables assume for the example data under consideration.

Confidence intervals are calculated for response variables in
subsequent sanples, which are normalized with respect to an appropriate
independent variable, to yield plots of normalized response as a
function of fiber volume ratio, for various values of distribution
parameters for the related independent variable. These plots
demonstrate the sensitivity of ply properties to randomly selected
uncertainties in constituent and fabrication variables.

Several multiple linear regression nodels were calculated for
response variables. The relative correlation of predictor (irﬂependent)
variables with response is studied for all output properties considered.
Varying levels of significance were achieved in the regression
equations, due to the differences in complexity of response variables.
Elastic constants can be described adequately with simple regressor
functions, and generally explain between 80 and 99 percent of the

observed response variations about a mean. The regression nodels
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stulied for strength, although achieving better reliability with higher
order regressor functions, denmonstrate such low significanoe as to be

practically useless for predictive purposes. This is not an unexpected

.result, because of the conplex nature of strength behavior in conposite

materials.



CHAPTER II

METHODS OF CALCULATION

A. Overall plan
1. Input structure for ICAN -
The input data for a typical execution of the available ICAN

program consists of (see Fig 5)

1. header card

2. control cards

3. ply data cards

4. material system cards
3. load cards

For repeated use of the ICAN program, input data files must be
created and used one at a time. Each successive run of the master
program (of which ICAN is made a subroutine) wites the input file from
user-supplied parameters and calls ICAN. The ply data cards contain
randomly generated fiber orientation angle values. The material system

cards contain randomly generated values for fiber and void volume

ratios.

1?7
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2. Constituent Property Variations

Each sucocessive execution of ICAN uses a distinct set of material
properties for fiber and matrix. The random nunber generation is
.perforned with user-supplied parameters which are stored in a separate
file. The options of using either generated properties or using the
values contained in the resident data bank are available. fny subset of
the parameters described may be generated or held constant with proper
specification of the Booleans which control the input to the ICAN

program. (see Figs. 6,7)
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FIBER STREHGTngARIZS; gONSTAN{SFIBEB VgLUﬂE RATIO OF 0.30;TAPE 003131

STDATA
T
F
F
F
T

PLY
MATCRDAS -

PLOAD
PLOAD
PLOAD
OPTION

EFPl
EFp2
GrPl2
GFP23
SFPT
SFPC
ENp
SHMPT
SMPC
SMPS

S50

T F T T
000.0 10.0 0.300 0.200 3.00 5
70.00 70.00 .0 .000
1IMHS AS-1IMHS 6.0 .57 .03
10. 0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0
0
Fig. 6- Command Input
T 0.3100E 08 0.3000E 07
T 0.2000E 07 0.2000E 06
T 0.2000E 07 0.2000E 06
F 0.1000E 07 0.1000E 06
T 0.4C00E 06 0.1000E 02
T 0.4000E 06 0.1000E 02
T 0.5000E 06 0.5000E 05
T 0.1500E 05 0.1000E 02
T 0.3500E 05 0.1000E 02
F 0.1300E 05 0.1000E 02

Fig. 7- Constituent Varfation Input. Example for AS-1 Graphite

fiber and IMHS Epoxy matrix, with wide varfations of
stiffnesses and strengths.
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3. Repeated runs

The user must specify the number of ICAN rums desired in a given
sample. In this study, fifty (50) runs were used throughout, to take
advantage of the simplification in statistics by using suitably large
samples. From elementary statistics, it is known that any process that
is the result of the comhined interaction of several probabilities can
be assumed to approximate a norwal distribution. For phenomena that are
assumed to approximate a rnormal distribution, the simplest forwms ror
calculating statistics apply to suitably large sanples (usually greater
than thirty}). The sanple size of fifty was chosen to supply a
practicably large anmount of data, within the restrictions inposed cn
conputation tine.

The data generated by repeated execution of the ICAN routines is
stored in a sequential access dataset, vhere the 50 output files are
separated by end of file markers. This arrangenent allcvs a single
Fortran unit to be used for output throughout. A siaple flowchart of
the data generation routines is shown in Fig. 8{a).

4. Data collection

The ICAN output files are searched to locate the specific material
properties and strengths of interest in this study. The flowchart of
data collection routines is shown in Fig. 8(b). After obtaining the
sample of ICAN output, the investigator may choose to scrutinize
parameters or calculate statistics aside from those chosen in this
study. This is likely, in light of the large quantity of data available

and the need for limiting the scope of this particular study to
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representative properties. The user would have to supply additional
code or adapt existing code to suit his purposes in this case. The
coded modifications to ICAN used in this study are included in Appendix

‘A.




START

CALL GENERATE,
CALL SUBROUTINE WRITE
SUBROUTINE UPBAT RANDOM
cory DATA
|
e || B
SUBROUTINE
MRITE BANK
1IRUT TO 1cAmw
new
ungT
‘ -
= RUNS
CALL 4
SUBACUTINE
1cuem

ENOFILE
® "'"

)

{(a) data generation program

READ
DATA
UNIT S

CALL
STATISTICS
SUBROUTINES

N

NISTORRNS CONF 10ENCE Tow
A cuRvES AraLrsis
DISTRISYTIONS

(b) analysis procedures

Fig. 8- Flow chart of Proﬁabﬂistic Integrated
Composites Analyzer
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B. Generation of Pseudo Random MNMumbers

fin integral part of any monte carlo simulation is the use of random
nunbers having a specified distribution which is assumed to characterize
" the process under study. Indeed, many statistics textbooks carry tables
of random numbers as appendices. Simulations using large sanples
require many repeated calculations, each with different “random”
nunbers. Since filling of a conputer wemory with a large table of
random nunbers is wasteful, algorithms have been developed (Ref. 9) to
generate streams of random nunbers whenever needed in the process of
calculations. The nunmbers used are usually obtained using some form of

a recursion relation, hence the sequence is termed pseudo-random.

1. Uniform Distribution

The starting point for many random number schemes is the uniform
random nunber generator, vhich similates a sample from the uniform
distribution. A continuwous random variable has a uniform distribution
over an interval a tob ( b ) a ) if it is equally likely to take on any
value in this interval. The probability density function is thus

constant over ( a,b ) and has the form
1

b -a

o elsevhere

a<x<h

£(x)

The probability distribution function is, on integrating

o x {(a

F(x)

= a<x<h
b-a
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=1 x >hb
The uniform distribution is shown in density and distribution form in
Figs. 9a and 9b.

Lehmer (Ref. 1@) proposed the congruential method of generating
pseudo random numbers conforming to the wniform distribution. The
recurrence relation takes the form:

X, = (axi_‘l +b ) modulom

where the notation signifies that Xx; is the reminder when (ax, , + b)

1
is divided by m. The multiplier a, increment b, and modulus m are
integers. The starting value Ko must be assumed, and is knouwn as the
"seed” of the generator. Generators for which b = @ are known as
multiplicative. They are called mixed wvhen b is nonzero. Because
selection of the multiplier a and modulus m strongly influence the
generator, nost generators in use are of the multiplicative form. A
discussion of the choice of parameters, maximum period, and degree of
correlation of this generator is available (Ref. 11).

For a given uniform random nuvber u on the interval {@,1) a random
nunber x having a desired distribution F(x) is often obtained by solving
the equation u = F(x) for x (Ref. 12). Since the process requires the
determination of the inverse distribution function F‘_l(x), its use
depends on the ease of deriving the expression or some approximation.

The following sections describe the distributions used, and methods for

generating random numbers on those distributions.
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2. Normal (Gaussian) Distribution
The most commn distribution is the familiar norml distribution,

with the "bell shaped” density function, given by

\ 1 (x-u)?
£{x;u,0%) = — exp| - 20_2

w0 {( X {0 ygu{ew and o) O
with mean ¢ and standard deviation o. The distribution function is

written

1 X (u-g)?
F(x) = ot l_{o exp[- gz [du
vwhich cannot be expressed in closed form analytically but can be
nmuerically evaluated at any value of x.

The Box-Muller or "Polar" wmethod (Ref. 13) is most commnly used
for generating random deviates from a mean to approximate the norml
distribution. If x1 and x2 are independent uniform random variables,

then

@.5
Yy c(-2 In xl) cos 2:'::(2 +u

0.5 .
Yy c{-2 In xl) sin 2mt2 +pu

are independent random variables with the standard normal distribution

having mean g and standard deviation o.
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3. Gammma Distribution

The gamma distribution is a tw-parameter distribution which is
flexible in fitting a variety of random processes. It is a one sided
"distribution in that physical quantities that are limited to values in

the positive range are frequently modeled by it. Its density function

is given by

k
A An k-1
e X

rk)
where x, A\, k > @, and k is an integer.

-

The parameters A and k may be interpreted as scale and shape parameters,

respectively. [I(k) is the well known gamm function,

r{k) = ﬁ: uk-le_udu,

which is widely tabulated. The gamm distribution function is given by

k X
A J k-1 -Au

F(x):-r—“:-)— o U e du

I'(k,\x)
T (k)
=@ elsewhere

x>0

where [I(k,u) is the inconplete gamm function
u

r(k,u) = J 1 e Xax
@

which is also widely tabulated. For integer values of k,
r{k) = (k-1)!
and the gamm distribution is known as the Erlangian distribution after

A. E. Erlang, who introduced it in the theory of queues and Markov

processes.
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Gamma variates are generated using the sequence

ul'uz’us, ae e LI %
satisfying the uniform distribution on the interval (O,1).

"The recursion relation is

1
yl=——Tlnu.,
x 1 K
"=§V1='T1" izl“i

i=1
where x is a gamm variate having parameters A and k (Ref. 14).

27
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4. Weibull Distribution
The Weibull distribution (Ref. 15) is wost popular when modeling

problems of reliability, material strength, and fatigue. The Weibull
.density function is given by

£(x;a,B) = aﬁx‘e-lexp(-c:xp)

Q@<x{ew a)o, g1

where a and B are the shape and scale parameters, respectively. The
cuulative distribution function

y =F(x) = 1 -exp[-(wB)°] |
leads immediately to the inverse relationship

Fly) =x= - B[ In(1-y) }'®

as the desired Weibull random generator when y is a uniform random

variable.

Figures 9-12 show the above distributions in analytical form.
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C. Distribution Assumptions

The variables chosen for variation are those for which reasonable
assunptions can be made to describe their distribution. The fiber
'geonetric conf iguration with respect to ply axes is assumed to follow a
normal distribution with mean of zero (degrees) and some small standard
deviation, to be specified. The fiber volume ratio is assumed to be
normally distributed about some mean between ©.3 and @.7. The void
volume ratio, which is ideally smll, is assumed to follow a gamma
distribution skewed toward zero. (Note that in the gamm distribution
used, a value of zero has a probability of zero. This model is chosen
because the state of mbst present manufacturing technology precludes the
fabrication of a fiber composite completely free of void. )

The properties of individual fibers and matrix are varied. The
normal and shear woduli are assumed to follow the norml distribution,
and the strengths are assumed to be Weibull distributed.

Figs. 13-27 show the results of random number generation in each

distribution studied. The density (or histogram) and cumlative

distribution plots are shown. Several weibull and gamma distribution

simulations are shown, to demonstrate the effects of assumed parameter

variations on the distribution sampling.
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D. Use of ICAN
This section describes the essential theories and assumptions

incorporated in the ICAN program. The symbolic notation conventions,

formulations, and definitions are included in Appendix B.

1. Composite Micromechanics

The branch of conposite mechanics which relates ply properties to
constituent properties is known as composite micromechanics. The inputs

consist not only of constituent material properties (fiber and matrix),

but geometric configuration and fabrication process. Output includes

ply hygral, thermal, and mechanical properties. The assumptions for
equation development are: (Ref. 16)

1. The Mechanics of Materials are used to derive the equations,
allowing each property to be individually identified.
2. The ply resists in-plane loads according to the schematic

shown in Fig. 4(b}.
3. The ply and its constituents behave in a linear elastic manner

to fracture (see Fig. 28).
4. The ply is transversely isotropic in the 2-3 plane.

5. The matrix is isotropic.
6. Complete bond exists at the fiber-matrix interface.

The direction conventions and terminology used in the equations

are:
1. Properties measured along fiber direction are called
longitudinal.
2. Properties measured transverse to fiber direction are called
transverse. ,
3. In-plane shear is also known as intralaminar shear.

4. All ply properties are defined with respect to ply material
axes (1,2,3) for description and analysis.
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2. Laminate Theory

Classical laminate theory supplies a convenient procedure to
predict the response of a laminate to external load. The theory uses
.anisotropic elasticity to obtain the stress-strain relationship for the
basic lamina. The stress-strain relations of individual laminae are
transformed to coincide with a global set of reference axes. The
stress-stain law of the laminate in terms of the properties amnd
distribution of individual laminae are calculated using a summtion.
Resultant forces and nmoments are defined by integrating the stresses
through the thickness of the laminate. The plate constitutive equation
is inverted, giving midplane strains and plate curvatures in terms of
applied forces and moments. These strains and curvatures are
substituted into the lamina stress-strain equation to obtain lamina
stresses in the global system. The stresses obtained are then
transformed into the principal material system of the lamina in question

and conmpared with ultimate stresses obtained using failure criteria.
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3. Strength Theories

The strength theories in ICAN wmake use of several assumptions.
First, it is assumed that there are five characteristic values of
- strength of a unidirectional composite:
1. longitudinal tensile strength
2. longitudinal compressive strength (3 separate criteria)
a. rule of mixtures
b. fiber microbuckling
c. delamination . .

3. transverse tensile strength

4. transverse conpressive strength

5. in-plane or intralaminar shear strength
The fracture modes usually associated with these strengths are shown
schematically in Fig. 29.

Once ply strengths are calculated (in the ply coordinate systems),
geometric transformations are used to calculate composite failure loads.
The process used is briefly described below.

1. Calculate loads (in conposite system) required to induce load equal
to ply strengths (in ply systems) for each wode.

2. Calculate minimum of failure loads for each ply.

3. Calculate minimum of failure loads of all plies, and use this load

as the failure strength of the composite for a particular failure

mode.
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E. Review of Applicable Statistical Concepts

Composite properties are calculated for large sanples using a
specific set of distributions of input properties. In this context,

small sampling theory does not apply, because the samples used are

sufficiently large.

1. Sample Means
Calculation of the mean sample values proceeds by defining

n
z K, <
_ i=1
mean = X =
n
vhere n = sample size
x .= sanmple data values

1
The population mean is unknown, so the sample mean is assumed to be the

best estimator of the population mean.

2. Sample Standard Deviation

An estimate of the population standard deviation is calculated

using the statistically efficient estimator

n n 172
o=} ——— z (x. - ;)2 n> 30
n-1 i=1 i ' =

3. Confidence Interval Estimates

fin inportant problem in the area of statistical inference is the

estimtion of population parameters (such as mean, variance, etc.) from

sanple statistics. Parameters x and o are the mean and standard
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deviation of the sampling distribution of a statistic S. The sampling
distribution of § is assumed as approximately normal (vhioh is true for

many statistical distributions if n 2 3@). Confidence interval

estimates are constructed for the statistic S. Thus, intervals are

identified for vhich it can be asserted with a reasonable degree of
certainty that they contain the parameter considered. Obviously, the
degree of certainty (or confidence level) will vary with the size of the
interval chosen. Values of confidence coefficients, g are associated
with confidence levels. For example, an actual sample statistic S is
expected to be found lying in the interval (x - zca) to (x + zco) (where
o is the unknown population standard deviation) some percent of the
time. Let the z, value in this example be 1. Assuming a normal
sampling distribution, (with z, = 1) the normal distribution area
function specifies that § falls between (x - 6) and (x + o) about
68.27% of the time. Similarly, the confidence of X lying in the
interval (S - o) to (S + o) is about 68.27/4. The endpoints of the
intervals are known as confidence limits. Various confidence
coeff icients Z, corresponding to frequently used conf idence levels,
have been tabulated. |

In this work, the confidence interval for weans is given in terms

of the sanmple statistics by

_ c

Xtz ——
/n

where z_ is the confidence coefficient, which takes on values of

1.645, 1.960, and 2.580 for the 99, 95, and 9974 confidence levels,
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respectively.
4. Regression

The term “regression” as used in the area of statistics refers to
" the process of formilating a mathematical model to explain randomly
observed phenomena. Some functional form for the way each variable
enters the model must be assumed. Cowparison of the degree of fit of
different assumed models ideally leads to a better model. The basic

regression strategy used here consists of:

1. Assume a multiple linear regression model. The normal equations

for such a model are:

{v} = [KK8} + {¢}

{Y} = vector of dependent variable values
[X] = matrix of functions of independent variable
{B} = regression "true"” values

{€} = errors

The normal equations can be solved as follows:
(x17(v) = [X]7[x1(8) + [X]"(e)
(v} = [¥%]'[¥](v)
where

{b} = parameter estimates

2. Use a standard statistical package {Ref. 17} to estimte regression

parameters.
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3. Calculate properties of regression parameter distributions to

assess wodel precision.

In the event that [XTX] is singular, implying that some of the
normal equations are linearly dependent, [XTX]'.1 does not exist. The
model should be expressed in terms of fewer parameters, or should
include assumed restrictions on the parameters.

The square of the multiple correlation coefficient, 82, is usually
calculated for each regression model, and supplies a convenient measure
of the degree of fit between data values (Y} and values {G)

predicted by the regression equation. It is defined by

Sum of Squares due to regression model
Total Sum of squares about mean Y

L (v, -Y)?

Frequently, it is necessary to determine if inclusion of particular
terms in a regression model is worthwhile. To this end, the extra
portion of the regression sum of squares which arises due to the terms
under consideration is calculated. The mean square (defined as the sum
of squares divided by the corresponding degrees of freedom) derived from
this extra sum of squares can be compared with s?, the estimate of o2,

to see if it appears significantly large. If it does, the terms under
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consideration should be included. The statistic is frequently compared
to the appropriate percentage point of the F- distribution, which is
tabulated.

Supopose the extra sum of squares due to a parameter, given that a
nurber of other paramneters are already in the model, is calculated.
Symbolically,

SS(b, }be,bl,...,bi_l,biﬂ,...,bk) i=1,2,..,k
represents a one degree of freedom ( 1 df ) sum of squares which .
measures the portion of the regression sum of squares due to the
coeff icient bi' This is a measure of the value of adding a Bi term to
the wodel which previously did not include ﬁi. The corresponding mean
square, equal to the SS (since it has one df)} can be compared by an
F- test to s?. This is known as a partial F- test for the single
parameter Bi’ which is a special case of the F- test described earlier.

The stepwise regression procedure (Ref. 18) is a structured way to
insert variables in order of correlation until the regression equation
is satisfactory. The partial correlation coefficient measures the
relative importance of terms not yet in the model, to choose the next
candidate for entry. The analagous statistic, F- to enter (or F- to
remove) is usually evaluated for each predictor at every stage as though
it were the last term to enter the model, to determine if terms retained
at a previous step have become superf luous, because of some linear
dependence with terms now in the model. The largest F- statistic
calculated at each step is compared with the appropriate percentage

point of the F- distribution, and the predictor variable is entered (or
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removed) based on the significance of this F- test. Testing of the
least useful predictor is performed at every step. The R? statistic is
calculated, to provide a measure of the value of the regression at each
'step. This stepwise linear regression scheme is used in this work
because of its computational economy, and because it allows the analyst
to assess the relative influence (or correlation) between individual
predictor variables of a selected model and response for a particular
data sample. Other schemes are available (Ref. 18), such as backward
elimination. The stepwise procedure is recomended for its direct

nature in testing the mndel with only significant predictor terms.



CHAPTER I1I

RESULTS

fi. Property Histograms and Distributions

In this work, fiber and matrix properties are allewed to assume a
range of values to assess the sensitivity of the composite ply
properties to constituent perturbations. Graphite fiber and epoxy
matrix are used as the constituents. Initially, two separate sanples of
output data are generated and studied to demonstrate the effects of
input parameter changes on conposite material properties. These twp
cases are conmpared with a deterministic base case with no random input
property generation. The data for all three cases is given in Table I.

The results of cases 2 and 3 are shown in histogram and cumlative
distribution form in Figs. 3@ - 42. The results of the deterministic
case | are summarized in Table II, and can be easily conpared with the

histograms and distributions.
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TAHLE I- INPUT DATA FOR SAMPLING

INPUT CASE 1 CASE 2
THETA(degrees) 0.0 -
M - 2.0
o - 5.0
FVR @.50 -
M - 2.5
o - o.1
VUR 2.01 -
A - 3.9
k - 3
EFP1(ksi) 31000 -
7} - 31000
c - 1500
EFP2(ksi) 2000 -
M - 2000
c - 100
GFP12(ksi) 2000 -
M - 2000
c - 100
GFP23(ksi) 1000 -
M - 1000
(o] - 30
SFPT(ksi) 400 -
- 400
a - 20
SFPC(ksi) 400 -
B - 400
a - 20
P (ksi) 500 -
M - So0
c - 25
SMPT(ksi) 15 -
- 15
a - 20
SMPC(ksi) 35 -
- 35
a - 20
SMPS (ksi) 13 -
B - 13
a - 20
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TABLE II- CASE 1 RESULTS

PROPERTY

EC11

EC22

BC12

NUC12
Nuc21
CTE1Ll
CTE22
CTE12
SCRXT
SCXXC
SCYYT
SCYYC

SCXYS

VALUE

15750 ksi
1065 ksi
916 ksi
@.275
@.018

©.775 x 102

©.181 x 10
?.200
203 ksi
165 ksi
11.74 ksi
27.41 ksi

10.01 ksi
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HISTOGRAM FOR

CTE1]
LONG. THERMAL EXPANSION

65

HISTDGRAM FOR CTE
LONG. THERMAL EXPANSION

r o r
?r 9
[ e
7 F 7 -
» & - 6
(4] (%]
L © S|
=2 >
w ‘Il w * |
- 4 - 4
“ 3t “ gL
2 = 2 -
! - 1 -
I ﬂ” 1 ”l ” ] 1 1 ]
0. "e0S DOETTOIs Ut —phe o 0.6 T.0
RANGE CE -08) RANGE CE -D&)
(a) case 2 histogram (b) case 3 histogram
DISTRIBUTIDN OF CTE] DISTRIBUTION DOF CTE1}
LONG. THERMAL EXPANSION LONG. THERMAL EXPANS]ION
80 r $0
45 85 |-
80 %0
35 - 35 |-
wao wao
25 <25 |
-t -t
g20 | 220 |
] b~
915 of "‘,s =
10 ~ 10
6 - s -
no ® -.'25 ’0‘15 '0'05 U.hs U.IS n].ﬂ “0eb -W 01.2 U]o‘ T'-O
RANGE CE -06) RANSE CE -06)
(c) case 2 distribution (d) case 3 distribution
Fig. 35- Sampling results for Longitudinal Thermal Expansion



FREQUENCY

50
a5
%0
s
w3o
<25

g0
-

| )

66
HISTOGRAM FOR CTE22 HISTOGRAM FOR CTE22
TRAN. THERMAL EXPANSION TRAN. THERMAL EXPANSION
10
9 |-
¢
7 b
> &
$
w S
=
o Yl
o
“« 3L
2 b
0 1 | | §
1 «1% P ) 18 «20 .22

RANGE (¢ E -0%) RANGE ¢ E -0%)
(a) case 2 histogram (b) case 3 histogram
DISTRIBUTION DF CTE22 DISTRIBUTION OF CYE2?
TRAN, THERMAL EXPANSION & TRAN. THERMAL EXPANS]ION
85 |
a0 |
as |
wap |
EZS P~
S0 |
©i8 |
10 |-
s -
v, ok T3
RANGE (¢ E -0%) RANGE (¢ E -0%)
(c) case 2 distribution (d) case 3 distribution

Fig. 36~ Sampling results for Transverse Thermal Expansion



Zx2.8
>
Se.0
&

“ 1.8
1.0
0.6
0.0

50
a5
%0
13
wap

<25

HISTOGRAM FDR C1E12
CROSS THERMAL EXPANSION

FREQUENCY
N W s e v e e

.

1 i
'u? D.U 0.2 Uc* Uc‘
RANGE (E -0%)

(a) case 2 histogram

DISTRIBUTION OF CTEj2

CROSS THERMAL EXPANSION
S0

L 1)
&0
35
w30

<25

1 1 1 1 |
.2 0.0 0.2 U.¥ UT.s Og

RANGE ¢ E -0S)
(c) case 2 distribution

-

e

=
o

67

HISTOGRAM FOR CTE12

CRDSS THERMAL EXPANSION

1 l. 1 1
oa '00* -D.D o.; 0.1_){2

RANGE (¢ E -05)
(b) case 3 histogram

DISTRIBUTION OF CTE)2

CROSS THERMAL EXPANS]ION

1 1 1 (] ]
o' ’0.’ -D.U 0.4 UT T.?

RANGE (¢ E -05)
.(d) case 3 distribution

Fig. 37- Sampline results for Thermal Expansion Coupling



FREQUENCY
P

NN-’(’!.N.C

HISTOGRAM FOR SCXxX7
LONG. TENSILE STRENGTH

-
n; 1 ) ””
1 AT I I e,
RANGE C(E 03
(a) case 2 histogram
DISTRIBUTIDN DF SCXXT
LONG. TENSILE STRENGTM
"y b ——h—3,
RANGE (¢ E 02

(c) case 2 distribution

5.0
%.5
8.0
3.5
> 3.0
[*]
2.5
2.0
[- 4
“1.8
1.0
0.5

I F

68

HISTOGRAM FOR SCXXT
LONG. TENSILE STRENGTH

L

.

.De .’2 .‘6 .20
RANGE CE 03

(b) case 3 histogram

DISTRIBUTION DF SCXXT
LONG. TENSILE STRENGTH

1)
RANGE (E 03
(d) case 3 distribution

Fig. 38- Sampling results for Longitudinal Tensile Strength
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Fig. 42- Sampling results for In-plane Shear Strength
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B. Fiber Strength Effect

To show the effect of fiber strength changes on the longitudinal
strengths of the composite, several shape parameters of the weibull
‘distribution for fiber strength are assumed. The nonte carlo procedure
is then conducted at several fiber volume ratio values, All properties
are varied, except fiber volume ratio. The distribution parameters of
all properties except fiber strengths are held constant. The curves
generated are shown in Figs. 43 and 44. In the figures the solid lines
and synbols show the means of the 95/ confidence intert_:al estimates for
the sample size of S50 chosen at each point. The points on both sides of
each curve locate the upper and lower bounds of the conf idence
intervals. The convention described is intended to provide a convenjent

indication of the dispersion of the sanple values at each point,
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Fig. 44- Longitudinal Compressive Strength; for various
shape parameters of fiber strength.
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C. Matrix Strength Effect
The effects of changes in watrix strength on composite strengths
are studied by suitable variation of the shape parameters governing the
‘tmtrix strength distributions. fnalagous to the plots given for fiber

strength effects, the matrix effects are shown in Figs. 45 - 47.
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Fig. 45- Transverse Tensile Strength; for various
shape parameters of matrix strengths.
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Fig. 46- Transverse Compressive Strength; for various
shape parameters of matrix strengths.
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Fig. 47- In-plane Shear Strength; for various
shape parameters of matrix strengths,



D. Fiber Orientation Effect
Assumed values of the fiber orientation angle distribution
parameter are consecutively used in the monte carlo procedure to assess
' the effects on several composite properties. These plots are shown in

Figs. 48 - 57,

E. Fiber Stiffness Effect
Assuned values of the fiber modulus distribution parameter are used
in the simulation to similarly assess the effects on the related
composite properties. The plots thus generated are shown in Figs.

358-67.
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Fig. 50- In-plane Shear Modulus; for various
shape parameters of fiber crientation.
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Fig. 52- Longitudinal Compressive Strength; for various
shape parameters of fiber orientation.
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Fig. 54- Transverse Compressive Strength; for various
shape parameters of fiber orientation.
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Fig. 55- In-plane Shear Strength; for various
shape parameters of fiber orientation.
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Fig. 58- Longitudinal Elastic Modulus; for various
shape parameters of fiber modulus.
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Fig. 59- Transverse Elastic Modulus; for various
shape parameters of fiber modulus.
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Fig. 60- In Plane Shear Modulus; for various
shape parameters of fiber modulus.
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Fig. 63- Longitudinal Tensile Strength; for various
shape parameters of fiber modulus.
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Fig. 64- Longitudinal Compressive Strength; for various

shape parameters of fiber modulus.
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Fig. 67- In Plane Shear Strength; for varfous
shape parameters of fiber modulus.
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G. Regression Models

The output data of cases 2 through 11 are used as successive inputs
to the regression scheme. The goal of stepwise regression, as used
‘her'e, is to measure the degree of correlation between a dependent and a
set of independent variables for a given set of data. The outputs of
the regressions conducted show the independent variables accepted into
the mdel (based on F-test criteria) in order of degree of correlation
with the dependent variable of interest, along with the final R2
statistic. (The R2 values represent the square of the multiple
correlation coefficient, a convenient measure of the fit between data
values and values predicted by the regression equation. )

The ordering of predictor variables by stepwise regression has
several important uses, In this study, the scheme facilitates easy
investigation of the effects of material changes on conposite
properties. Since the wonte carlo scheme permits generation of large
amounts of data, the regression is easy, inexpensive, and can provide
insight concerning the sensitivity of dependent variables for assumed
distributions of predictor variables. A variety of material
configurations and constituent distributions are examined, and a wndel
constructed for each dependent (or response) variable. It must be noted
that the relative correlations of predictor variables with response
variables will be functions of the assumed distributions, the particular
data sanple considered, and the functional manner in which the predictor
variables are incorporated into the model.

A simple regression model was assumed for each response variable.
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The first set of “simple” regression wndels uses as predictor functions
only the independent variables as individual terms. To be nore precise,
the predictor variables used are not simply the independent variable
Avaluas, for there are 15 of these for each layup. The arithmetic wean
of independent variable values is thus used as the predictor variable in
the first set of regression models. The only exception to this is the
use of the sin? of the average of the fiber orientation angles as the
angular dependence predictor, denoted by THETA in the tables to follow.
The simpler response variables can be adequately described using the
linear function forms in the regression models. The simple variables
include the elastic constants, (EC11, BC22, EC12, NUC12, NUC21) and
coefficients of thermal expansion (CTE11, CTE22). The results of the
regressions perforwmed in the “simple” manner are given in Tables III -
KIV. 1In the tables the input labeled with Ni through N5 and Wi through
W5 represent narrow and wide distributions of all properties. Input
labeled N6 through N1® and W6 through W10 describe the same
distributions, except that the composite is assumed unidirectional, i.e.
no angular variation. The distinction shows the reduction in predictive
capability induced by deviations of the fibers from aligned orientation.
The nodels assumed for the response (output) variables are of the

form

o]
]

where
Y = response variable (EC11, BC22, EC12, etc.)

Bn = regression parameters to be obtained






INPUT

Ni

N4

8 EEEEG

=
(-]

g 3

Ni@

585K

w10

.3
0.4
2.5

2.3
2.4
2.5
2.6
2.7

TABLE TII- LONGITUDINAL MODULUS (EC11)

SIMPLE MODEL
TERMS ACCEPTED

FUR, EFP1
FVR,EFP1, THETA
FVR,EFP{, THETR
FVR,EFP1,THETA
FVR, EFP1

FVR, THETA, EFP1
FUR, EFP1, THETA
FVR, THETA, EFP1
FVR, THETA, EFP1
FVR,EFP1, THETA

FVR,EFP1,E}P
FVR, EFP!
FVR,EFP1
FVR,EFP1,E}P
FVR,EFP{
FVR,EFP1, VR
FUR,EFP1
FVR,EFP1
FVR, EFP1
FVR, EFP1

104

83.17
92.63
94.02
94.359
84.00
64.49
89.88
?2.85
65.37
97.83

99.83
99.81
99.69
99.74
99.77
99.13
98. 430
98.90
99.59
99.34



0.3
0.4
0.5
0.6
2.7
0.3
@.4
@.5
@.6
Q.7

2.3
0.4
2.5
Q.6
0.7
.3
0.4
2.5
0.6
0.7

TABLE IV- TRANSVERSE MODULUS (EC22)

SIMPLE MODEL
TERMS ACCEPTED

FUR, EFP2
FUR

FUR, EFP2

FVR, EFP2

FVR, EFP2, THETA
FVR, THETA, EFP2
FVR, THETA, EFP2
FVUR, THETR, EFP2
FVUR, THETA, EFP2
FUR, THETA, EFP2

FUR,EFP2
FVR,EFP2
FVR, EFP2
FVR, EFP2
FVR,EFP2
FVR, EFP2
FUR, EFP2
FVR, EFP2
FVR, EFP2
FVR, EFP2

105

82

83.50
85.23
91.83
93.26
93.06
78.36
90.73
80.15
86.05
87.14

87.13
86.15
90.97
93.47
92.05
79.72
.71
81.92
88.62
B84.@5



INPUT

58 =

N4

BEESEZ

&5 3%

Nio

§55¢§

wie

&

0.4
0.5
2.6
?.7
0.3
0.4
@.5
2.6
0.7

2.3
0.4
0.5
Q.6
0.7
2.3
0.4
2.5
2.6
0.7

TABLE Y- SHEAR MODULUS {EC12)

106

R2

97.01
98.85
97.50
98.01
98.42
94.79
N 94.27
93.71
95.62
96.67

97.66
9e.02
96.65
97.11
98.55
96.93
92.45
95.16
97.18
96.90



TABLE VI- POISSON'S RATIO, MAJOR (NUC12)

&

2.4
0.5
0.6
0.7
2.3
2.4
0.5
?.6
.7

2.3
0.4
Q.5
2.6
0.7
2.3
.4
0.5
2.6
0.7

SIMPLE MODEL
TERMS ACCEPTED

THETA, EFP1
THETA, FVR
THETA, FVR
THETA, FUR, EFP1
THETA, FUR, EFP2
THETA, EFP1
THETA, FUR
THETA

THETA, VUR
THETA, FUR

333333

FVR,VUR

FVR,GFP12,EFP2
FUR,EFP2

107

RZ

96.39
97.88
96.60
98.32
96.62
88.43
84.62
89.48
84.05
92.05

97.83
98.48
97.727?
98.40
99.17
97.32
96.45
96.38
98.34
96.96
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TABLE VII- POISSON’S RATIO, MINOR (NUC21)

SIMPLE MODEL
INPUT FUR TERMS ACCEPTED R?
N1 e.3 THETA,FUR 91.15
N2 2.4 THETA, FUR, EFP1 94.78
N3 2.5 THETA, FUR 94.31
N4 2.6 THETA,FVR, EFP1,EFP2 97.18
NS 0.7 THETA,FUR, EFP1 95.87
w1 0.3 THETA, FUR 90.87
w2 0.4 THETA, FUR, EFP2 89.86
w3 @.5 THETA,FVR 91.93
W 2.6 THETA 92.57
us Q.7 THETA, FUR, EFP1 94.78
N6 2.3 FUR,EFP1,EFP2 95.64
N7 2.4 FVR,EFP1,EFP2 94.90
N8 2.5 FUR,EFP1,EFP2 95.40
N9 2.6 FUR,EFP1,EFP2 93.12
N10 2.7 FVR,EFP1,EFP2 91.83
w6 2.3 FUR,EFP1,GFP12 87.73
w? 2.4 FUR,EFP1,EFP2 85.06
uws 2.5 FVR,EFP1,EFP2 84.29
w9 2.6 FVR,EFP1,EFP2 90.37

wio 0.7 EFP1,FVR,EFP2 91.42



. TRBLE VIII- LONG. THERM. EXPANSION {CTE11)

FVR

2.3
0.4
2.5
@.6
2.7
0.3
0.4
2.5
@.6
.7

e.3
2.4
2.5
2.6
Q.7
2.3
2.4
2.5
Q.6
2.7

SIMPLE MODEL
TERMS ACCEPTED

FVR, THETA, EFP}
THETR, FVR, EFP1, VVR
FVR, THETA, EFF1, VUR
FUR, THETA, EFP1, VUR
THETA, FVR
THETA, FUR, EFP1
THETA, FUR
THETA,FVR

THETA, FUR, UUR
THETA

FVR,EFP1,VUVR
FVR,EFP1,VUR
FVR,EFP1,VVR
FUR, EFP1
FVR, EFP1
FVR, EFP1
FVR, EFP1
FVR, EFP1
FVR, EFP1,VUR
FVR, EFP|{

1e9

RZ

90.29
94.46
95.72
95.23
87.63
BO.33
78.91
84.77
74.37
80.50

97.21
96.96
96.53
96.60
96.24
91.60
90. 88
91.55
96.23
94.13



INPUT

TABLE IX- TRANS. THERM. EXPANSION (CTE22)

&

0.4
9.5
2.6
0.7
2.3
2.4
2.5
@.6
0.7

2.3
2.4
a.5
@.6
.7
0.3
0.4
2.5
2.6
0.7

SIMPLE MODEL
TERMS ACCEPTED

FVR, THETA, VUR
FVR, THETR, VUR

FVR, THETRA, VUR

FVR, THETA

FUR, THETA

FVR, THETA

FVR, THETA, EFP1, UUR
FVR, THETA

FVR, THETA

FVR, THETA

FUR, UUR, EFP1
FUR, VUR

FUR, VUR

FUR

FUR

FVUR, EFP1

5333

110

Rz

99.60
99.21
99.46
99.69
99.79
95.04
98.60
95.19
94.84
97.98

99.70
99.53
99.65
99.67
99.75
99.15
98.81
98.88
99.47
99.22



INPUT

B EEEEFEBZRE

5 3 F

N1@

85 F

Wio

2.3
2.4
@.5
Q.6
.7
2.3

S &9
N oo

TABLE X- LONG. TENSILE STRENGTH (SCXXT)

SIMPLE MODEL
TERMS ACCEPTED

FVR
FVR, SFPT

FUR

FVR, SFPT, THETA
FVR

FVR, SFPT
SFPT,FUR
EFP1,SFPT
FVR, P
FVR,SFPT

FVR,SFPT
FVR,SFPT,EFP1
FVR,SFPT

FVR, SFPT
SFPT,FVR
SFPT,FVR

FUR,SFPT
FVR, SFPT
SFPT,FVR

111

82

12.25
43.72
21.68
43.68
40.97
33.37
39.02
26.13
42.27
33.35

52.12
68.43
34.89
499.00
24.00
46.61
19.33
33.13
34.49
37.65



INPUT

TAHLE XI- LONG. COMPRESSIVE STRENGTH (SCRXC)

2.3
0.4
2.9
.6
Q.7
0.3
0.4
0.5
2.6
0.7

2.3
0.4
@.5
2.6
.7
@.3
0.4
2.5
2.6
0.7

SIMPLE MODEL
TERMS ACCEPTED

FVR
FUR

SFPC

THETA

QP,SMPC
THETA

112

R2

12.25
18.23

8.52
8.08
8.02
9.29
20.59
9.18

11.30

12.01
9.490
10.76
9.85
8.87



INPUT

B ESEEFEBERE

g 3 &

Ni©

585 5 K

uioe

TABLE XII- TRANSVERSE TENSILE STRENGTH (SCYYT)

2.3
2.4
@.5
@.6
0.7
2.3
0.4
2.5
0.6
.7

9.3
0.4
a.5
0.6
0.7
0.3
.4

Q.6
.7

SIMPLE MODEL
TERMS ACCEPTED

FVR
FVR

113

27.03
32.94
8.10

41.92

26.89
41.43
14.74

31.05

9.43
8.19
15.58

33.87
13.39
8.62

27.85
32.77



INPUT

114

SIMPLE MODEL
TERMS ACCEPTED

FVUR, SMPC

FUR,SMPC

R!

33.17
30.10

38.93

28.19

43.26

19.57

15.85

2B.68
11.64

31.97
33.05



TABLE XIV- IN PLANE SHEAR STRENGTH ({SCXYS)

2.3
2.4
@.5
2.6
0.7
.3
0.4
a.5
0.6
0.7

2.3
2.4
2.5
2.6
Q.7
0.3
2.4
2.5
2.6
Q.7

SIMPLE MDODEL
TERMS ACCEPTED

FVR, THETA, GFP12
FVR

THETA

THETA, GFP12,FVR, SMPS
NONE
THETR, VUR, SMPS, FUR
FVR

THETR

THETA

NONE

NONE

NONE

NONE

SMPS

VUR
FVR,SMPS, QP
NONE

NONE
GFP12,FVR
SMPS

115

B!

28.51
8.74

14.96
31.84

48. 16
43.26
8.40
14.75

8.25
8.53
29.06

22.20
17.73
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Further regression wodels were studied, in an attempt to iwpx;oue
the predictive capability of the models, especially for the strengths.
These wodels, incorporating higher order functions and combinations of

'predictor variables used in the simple models, show some improvement
over the simple models, proving the value of including the "interaction"
effects of predictor variables in the regression models. In addition,
the higher order interaction models can fit response functions over a
wider range of fiber volume ratio, with associated inmprovenents in the
R? statistics. The data cases CON! and CON2 contain selected points
from the entire range of fiber volume ratios, to supply the samples for
these runs. Furtherrore, since higher order models are postulated,
THETA is taken to be the cosine of the average of fiber orientation
angles. The variable MUR is a “dummy” variable, that is a function of
other variables in the model. It is defined as

MR = 1 - FVR - VUR
and is intended to represent an “average” matrix volume ratio over the
thickness of the ply. The interaction models are shown in Tables XV -
XXVI.

The general form of the postulated models now includes higher order
terms, so the predictor variables are tested up to the fourth power.
Symholically,

Y = By + B;(THETA) + B2 (FUR) + B;{WUR) + B(EFP1) + Bs(EYP) +
B¢ (MVR) + B,(THETA)? + By (THETA) (FVR) + By (THETA) (VVR) +
By o (THETA) (EFP1) + ... + B, (THETA) 2(FVR) (EFP1) + ...
B, 2 (THETA)" + B,;(FUR)?+ ... etc.
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The number of terms possible in a complete fourth power polynomial
expansion becomes unwieldy for the cases studied. Considering the
limitation of the size of the predictor matrix in the regression package
" used (102 x 12@), the terms are intuitively grouped in the hope of
eliminating large groups at one time. The regressions are conducted
using “unlikely” candidates for admission into a particular model, and
if no terms are entered, subsequent regressions are conducted without
those terms. The justification for this approach is nmot a statistical
argument, rather an interpretation of the physical principles active in'
any chosen model. The regressions to eliminate terms are merely used as

a check on what seems intuitively reasonable.



INPUT

N1

N4

5 EEEREGS

z
2}

g 3

N1©

58§ F

wio

CON1
CON2

5

.3
0.4
2.5
2.6
2.7
0.3
2.4
2.5
0.6
0.7

0.3
0.4
Q.5
Q.6
.7
.3
0.4
2.5
2.6
0.7

VARIES
VARIES

TARLE XV- LONGITUDINAL MODULUS (EC11)

INTERACTION MODEL
TERMS ACCEPTED

THETA"Y*FURXEFP 1
THETA"*FURXEFP1
THETA"“*FURMEFP1
THETA“*FURSEFP1
THETAY#FUR*EFP1
THETA'"%FURSEFP1
THETA"#FURSEFP1
THETAY*FURSEFP
THETA“*FURXEFP1
THETA“#FURXEFP 1

FURSEFP1, 2P 2%MVR
FVURXEFP|,FUR"

FURKEFP1
FURXEFFP 1, EMP2%UUR, VURY
FUR®EFP1 , EMP*MVR
FUR®EFP1,UUR
FURSEFP1,MUR2%FUR
FURXEFP1 , MUR2xEXP
FVR*EFP1

FVR%EFP), }P*MVR

THETAY#FURKEFP 1
FVR*EFP1,VURY

118

R!

84.50
92.66
93.76
94.24
85.08
63.84
89.86
71.79
64.37
35.68

99.82
99.83
99.72
99.79
99.79
99.17
98.53
98.99
99.58
99.38

96.48
99.92



N8
NS
Nio

885 F

wie

CON1
CON2

8

2.3
2.4
2.5
2.6
0.7
0.3
0.4
0.5
2.6
0.7

2.3
2.4
2.5
2.6
@.7
0.3
2.4
0.5
Q.6
.7

VARIES
VARIES

TABLE XvI- TRANSVERSE MODULUS (EC22)

INTERACTION MDDEL
TERMS ACCEPTED

FURXEFP2¢EMP, EFP2 2xFyR, THETA*FURXMUR
M*mzxm,mzz*m,mn
FURSEFP2xEYP, THETA?#EFP2, MR
FURXEFP2xE2P, THETA?*EFP2, EFP22xFUR
¢ NEARLY SINGULAR
nma’xmn,mzxmz,mn’

FVR*EMP, THETA, EFP22%FUR .
FURXEFP2xEMP » THETA, FURXEFP2xMUR
THETQ"‘*WR,WR‘*EFPLB‘P*WR

¥% NEARLY SINGULAR

FVR*EFP2*B‘P,EFP22*FVR, EXP»MUR
FURREFP2%EMP , P ?FUR

FURXEFP2xEXP, FURXEFP2xMUR
FURKEFP25EMP , FUR 23

FURY, EFP2«pxP

FVRNEFP2%EYP , EFP2, EFp2? *EMP, FUREFP2
FURKEFP2xEYP, FVRXEFP2xMUR, FUR®UUR
FURSEFP2xEMP » FURKEFP2xMUR
FURSEFP2%EMP, EFP22xMyR
FURXEFP2EMP, MUR 2%FUR

% NEARLY SINGULAR
FVR*EFP2*ENP,FVRNEFP2*HUR

119

R!

99.19
99.55
98.92
99.22

93.26
96.79
93.49
88.35

99.22
99.07
98.89
99.14
99.23
98.62
98.28
97.93
98.44
97.86

99.79



INPUT

N1

HEBBEEGELER

z
<2}

g 3

Ni0O

S HEESE

@

CON1
CON2

TABLE XVII- IN PLANE SHEAR MODULUS (FC12)

e.3
0.9
2.5
2.6
0.7
2.3
0.4
2.5
@.6
0.7

@.3
0.4
@.5
2.6
2.7
2.3
0.4
2.5
@.6
.7

VARIES
VARIES

INTERACTION MODEL
TERMS ACCEPTED

THETA, FURXGM'P , THETA " #FURNGIP

*#x NEARLY SINGULAR

THETA? ,FUR?%QP, GFP 1 2P

THETA, FUR?*MVR

THETA, FUR?»GP,GFP12

THETRY, FUR“»GP,FUR?

wx NEARLY SINGULAR -
THETAY*FUR%MUR, THETA#VVR, VUR*QP
THETAY,FUR¥»@P, THETA

»#% NEARLY SINGULAR

FURXGMP , MVR2GFP12
FUR*GMP,GFP12

FUR*GMP, FUR¥GFP12

FURGTP ,FURZnGFP12
FUR'®G'P, FURXGFP | 2P , MVRIxIP
FUR®GP , FUR®GFP12
FUR*GIMP , FURNGFP12
FURSGIMP , FURNGFP12

FUR*GMP, FUR2%GFP12

FVR“»GP , FURNGFP 1 2%G'P , MVR2%Q'P

FVRZ#UUR, VURNMUR, FURAP , THETA ' #FURXGI'P

FVR2*QP, VURKGP ,GFP | 2#GP

120

97.86

97.75
98.01
98.46
95.49

91.04
96.70

97.73
97.97
96.52
97.10
98.90
96.91
92.37
95.08
97.42
96.85

99.09
99.54



TABLE XVIII- LONG. THERMAL EXPANSION (CTE11)

INPUT FVR
Ni @.3
N2 Q.4
N3 2.5
N4 2.6
NS 0.7
w1 0.3
w2 0.4
W3 @.5
W 2.6
W 2.7
N6 2.3
N7 2.4
N8 Q.5
N9 2.6
N1© e.7
W6 2.3
w7 2.4
W8 2.5
w9 0.6
wio 0.7
CON1 VARIES
CON2 VARIES

INTERACTION MODEL
TERMS ACCEPTED

nm:m’nmn,mnz,wnxmum,m’xm1
nmn*~mn,ma“,m1“,m2*wn,m2xm1

THETA?*MUR, MUR, EMP 2%MUR, EMP 2%EFP |
FVURXEFP1, THETA¥FVR*EFP{ , EMP 2% MUR
THETA , EMP*MUR

%% NEARLY SINGULAR

THETAY, MVR2xEYP -
THETAY, EMP 2%MUR,

THETA"Y, MVR2UUR

THETAY, FURZxMUR

MVR?#E}P, EFP1 2#EMP, FURY
MVR?#EMP , FURXEFP { *MVR , MUR 2% UUR
MUR2%EMP, EFP1,FUR
MVRZ%EMP, EFP1 2%MVR

MVRZ¥EMP, EFP 1 %MUR .
MURZ%EMP , FURNEFP | *MUR
MURZ%E}P , FURNEFP 1 #MVR
MVR?EMP, EFP{ 2%MUR
MVR2=EXP, EFP 1 2%MUR

MUR2%EFP1 , EMP 2%MUR

1T§ZER,HUR3,EFPI’*VVR,FVB*UVR*EFPl

MUR?*EIP , FURKEFP 1 *MUR, FURY, FUR2%VUR. . .

121

92.51
96.38
97.26
96.32
90.66

80.81
87.98
75.20
82.97

99.29
99.17
98.94
98.94
99.33
98.35
98.55
98.56
99.00
98.20

96.82
99.84



INPUT

585 F

W10

CONY
CON2

TARLE XIX- TRANS. THERMAL EXPANSION (CTE22)

VR

2.3
0.4
@.5
2.6
0.7
0.3
2.9
0.5
2.6
0.7

.3
2.4
2.5
2.6
@.7
.3
0.4
@.5
0.6
.7

VARIES
VARIES

INTERACTION MODEL
TERMS ACCEPTED

THETA2*MVR, VUR
THETA?%MVR, MUR2%FUR, FURXEFP | E}P
THETA?#MVR, MVR2xFUR, FURY
T}Ern’*mR,mR’*FVR,B‘P’*WR,mR’nWR
FVR?, THETA, THETA?*FVR
THETA2%MUR, MR, EFP1 2%VUR

THETAZ®MVR, MUR, FURXEFP 1 *MUR N
THETAZ#MVR, MVR2#FVR, EFP 1 2xVUR
THETA?%MUR, THETA, THETAY

s NEARLY SINGULAR

FVR,MVR3
FUR,MURY
FVR,MVR?

FUR, EMP2xEFP1
FVR,MURY

FUR, FURKEFP | EMP
FUR, MUR

FUR

FVR,MVRY

FVR, EMP2»%FUR

THETA2*MVR
FVR,FVR3  MURZsEXP

122

99.602
99.38
99.48
99.723
99.81
95.16
98.71
95.91
95.69

99.70
99.59
99.67
99.70
99.82
99.26
98.97
98.88
99.57
99.29

99.32
99.95



INPUT

N1

N3
N4

BEEEEG

CON2

8

0.4
Q.5
2.6
0.7
2.3
2.4
2.5
@.6
0.7

2.3
2.4
@.5
.6
0.7
.3
2.4
2.5
2.6
2.7

VARIES
VARIES

TABLE XX- POISSON RATIO; MAJOR (NUC12)

INTERACTION MODEL
TERMS ACCEPTED

*e¢ NEARLY SINGULAR
THETR, EFP2%MVR
THETA,GFP112%MUR
THETA, EFP1%MWR

THETA, FURKEFP2

s NEARLY SINGULAR
THETA, THETA"¥FUR*GFP 12
THETA

THETA, VUR*GFP 12

THETA, FURMUR

FUR, UURKEFP2
FVR

FVR, EFP1%EFP2, GFP 1 2#MVUR
FUR, FURKEFP2

e STNGULAR
MVR, FURSMVR, EFP 1 ¥MVR

123

RI

97.96
96.71
98,17
96.48

84.73
89.43
84,27
92.10

97.83
98.48
9?7.77
98.352
99.17
97.32
96.50
96.38
98.41
96.97

99.77



F5 55

w10

CON1
CON2

E

2.4
2.5
2.6
0.7
2.3
0.4
2.5
@.6
8.7

2.3
0.4
2.5
2.6
0.7
0.3
0.4
Q.35
2.6
2.7

VARIES
VARIES

TABLE XXI- POISSON RATIO; MINOR (NUC21)

INTERACTION MODEL
TERMS ACCEPTED

THETA, THETA"*FURMEFP1

THETA, FURKEFP1

THETA, FURKEFP1 , EFP2%GFP12

THETA, THETA''#FURXEFP1 , EFP2

THETA, THETAY#FURKEFP {

THETA, FUR*GFP12

THETA, EFP2%MUR

THETA, FURXEFP |

THETR

THETR, FURXEFP 1, THETA"%¥FURXMVR , EFP 2% MUR

FURKEFP1 , FURXEFP2
FURNEFP1 , FURXEFP2

FURSEFP1, FURXEFP2, FURNGFP 12
FURKEFP1 , FURXEFP2

FURMEFP1 , FURXEFP2
FVR*EFP1,GFP12#MVR
FURMEFP1, FURXEFP2, FURKMUR
FURMEFP1 , EFP2

FURSEFP1 , FURKEFP2

FVRNEFP1, FURNEFP2

nma,mvmu,mz,mn"nmmn, cee
FURSEFP1,FVUR#MVR,EFP2, VURGFP12

1249

91.69
94.66
95.10
97.15
95.82
91.16
89.52
92.06
92.53
95.60

95.48
94.69
95.52
92.85
91.77
87.83
86.48
84.36
89.84
91.55

98.70
98.35



INPUT

TABLE XXI1I- LONGITUDINAL TENSILE STRENGTH {SCXHT)

e.3
2.4
Q.5
@.6
.7
2.3
2.4
Q.5
2.6
0.7

2.3
2.4
@.5
2.6
@.7?
9.3
0.4
2.5
2.6
2.7

VARIES
VARIES

INTERACTION MODEL
TERMS ACCEPTED

THETAY%FURNSFPT
THETA"*FVRNSFPT, MURY
THETA"Y*FUR*SFPT

THETA"'#FURXSFPT, FURZ%E}P
THETA"“*FURNSFPT

FUR*SFPT, FURXEFP 1 ¥MUR

FUR%SFPT, FUR2#MVR -
EFP 1#SFPT, MP*MVR

EMP2»MUR, THETA2%SFPT*MVR
THETA?%FURSFPT

FURXSFPT, FUR2xE2}P
FURMSFPT, FURXEFP1
FUR*SFPT, MUR2%FUR
FURRSFPT

FURXSFPT, FURXE}P
FUR*SFPT, MVR2»EFP 1
FURSSFPT

FURSSFPT

FURXSFPT

FURXSFPT

THETA“%FUR®SFPT, FURXVURXMUR, FURSEFP | *MUR
FURXSFPT, FUR%UVR, MVR 2%SFPT

125

R2

17.72
47.65
27.65
44.67
45.35
39.18
42.87
33.97
45.09
32.56

52.95
64.41
39.12
47.13
27.43
49.71
25.19
32.16
34.06
35.09

81.20
84.79



TABLE XKRIII- LONGITUDINAL COMPRESSIVE STRENGTH {SCxxC)

FVR

0.3
0.4
@.5
0.6
0.7
0.3
0.4
@.5
2.6
0.7

2.3
0.4
0.5
2.6
.7
.3
2.4
@.5
0.6
2.7

VARIES
VARIES

INTERACTION MODEL
TERMS ACCEPTED

SFPCxSMPC
FUR¥MUR

NONE

SFPCxQP

FURXGFP12

WR ]

THETAY

EMPxSMPC, THETA 2xEXP
THETAY

NONE

SFPC, GFP12%SMPC
NONE

NONE

NONE

GFP12%BYP
FVR»MUR

GFP124

FUR»*UUR
FUR*VUVR, SFPC

126

12.53
19.485

9.81
10.20
10.490
9.32
23.32
9.20

20.04

14.96
11.91
10.76
9.835
9.10

46.48
44.44



CON2

TABLE XXIV- TRANSVERSE TENSILE STRENGTH (SCYYT)

FVR

e.3
0.4
@.5
2.6
0.7
.3
2.4
@.5
2.6
0.7

.3
2.4
9.5
@.6
.7
2.3
0.4
@.5
0.6
@.7?

VARIES
VARIES

INTERACTION MODEL

TERMS ACCEFPTED

MURZ2%SMPT
MVRZxSMPT
EMPxSMPT
FURZxMUR

NONE

FUR2%UYR, SMPT
SMPT*MVR
MUR2%FUR
FURVURXEFP2, IP
FURXSIMPT

FURXMUR
MVR2%FUR
FURXEFP25SMPT
SMPT2xMUR
FURXEMP
MFR2xEYP
MUR2»UVR
SMPT2%MVR
FUR2%EFP2
MVR2%SMPT

THETA'#*SMPT*MUR, FUREFP2%MUR , ¥SMPT 2% MUR
SMPT2%MUR, FUR¥UURXMUR

127

R2

31.60
37.23
9.61

47.99

25.39
43.94
16.32
24.10
30.29

10.47
8.94

13.54
9.40

9.13

35.13
19.34
12.89
29.27
36.77

73.42
76.40



INPUT

N1

N3

BEEEEZZ

g 3 F

Ni©

§F&ESE

wio

CON1
CON2

TABLE XXV- TRANSVERSE COMPRESSIVE STRENGTH (ScYyc)

FVR

0.3
2.4
2.5
Q.6
0.7
2.3
2.4
2.5
0.6
.7

Q.3
0.4
2.5
2.6
e.7
0.3
2.4
@.5
2.6
.7

VARIES
VARIES

INTERACTION MODEL
TERMS ACCEFPTED

SMPCHMUR
FURZ»%EMP

NONE

FVR2%MUR

NONE

FUR2xUUR

FVR’*BP -
SMPC 2xMUR

FURVURKEFP2, P

SMPC*MUR

SMPC 2%MVR

EFP2»%MUR

FURXEFP2

NONE

SMPC2#MVR, FUR2xMVR
MUR2xEXP

EFP2%MVR

NONE

MVR2xSMPC

ml‘

THETA'#SMPC*MVR, FURY
MURY, FURZ2%MUR, MUR 2%SMPC

128

33.39
32.99

42.31

26.24
43.86
21.13
25.75
18.63

11.57
9.03
9.87

19.07
32.5@
14.58

32.85
35.79

76.43
75.99



INPUT

EEESEfzEER =

NiOo

58§ K

wio

CONt
CON2

TABLE XKVI- IN PLANE SHEAR STENGTH {SCXYS)

FVR

e.3
0.4
@.5
2.6
°.7?
2.3
0.4
2.5
0.6
0.7

9.3
2.9
Q.5
2.6
Q.7
2.3
.4
Q.5
Q.6
e.7?

VARIES
VARIES

INTERACTION MODEL
TERMS ACCEPTED

FURNGFP12#GP, THETAY
FURNGFP 1 2%E}P

THETA

THETA"%GFP12, SMPS¥MUR

NONE
nma.wmwmm,mn“*sms,wmmﬂ
THETA"FUR, THETAY#GFP 12 .
THETAY

THETA, FUR%VVR

THETAY*FVR

NONE
SMPS*MUR

NONE

SMPS, smps
FUR2»MUR
SMPS*MUR, PY
FURNGFP12%MVR
NONE
FUR*GFP12%MVR
sMPs

THETA"Y#FUR, FUR2xSMPS
FVR®VUR, MURY, FUR2%YUR

129

RZ

27.64
13.51
14,97
30.84

52.20
26.58
12.89
22.33
10.72

11.24

16.14
11.40
28.58
8.28

19.2¢
17.73

36.74
61.46



CHAPTER 1V
DISCUSSION

. Overview -

The numerical simulations conducted show that certain assumptions
about the statistical distribution of local monuniformities in fiber
composites lead directly to quantifiable variations in material
properties. The advantages inherent in the stochastic characterization
are nurerous. The development of quality control and reliabilty
measwres for composites is crucial to their acceptance in aircraft
designs. The reduction in needed experimental data achievable through
Judicious simulation of the wide variety of available composite material
systems could significantly lower the costs of waterial selection and
acceptance testing. In the results of this study, the conf idence
intervals calculated can be interpreted as the product of an
experimental program, specifically designed as an analog of the physical

processes which occur in real materials.

130
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B. Histograms and Distributions

Data cases 1, 2, and 3 denonstrate the differences between a
deterministic base case and random cases with narrow and wide dispersion
of input data about the base case.

In Fig. 30, it is apparent that the deterministic case |} value of
19750 ksi. for longitudinal modulus falls near the mean of the case 2
data. However, the case 3 sanple appears to have a mean slightly lower
(approximately 15000 ksi.). It should be noted that the size of the
interval over which the sample cccurs is noticeably larger in the widely
distributed case 3 run.

Transverse modulus, (Fig. 31) denonstrates a higher mean value for
the wide distribution than for the narrow, which is greater than the
deterministic value of 1065 ksi. reported in Table II. The increased
transverse modulus is related to the added stiffness available in fibers
with high misalignment relative to longitudinal direction.

Shear modulus, (Fig. 32) is measurably changed by nonuniformities.
The deterministic value of 516 ksi is exceeded by the case 2 value of
approximately 629 ksi, which is further exceeded by the case 3 value
near 999 ksi. Fiber misaligment has a significant effect in shear
modulus varjation.

Poisson’s ratios (Fig. 33, 34) show similar trends in location of
sample means and relative dispersion of the sample for the data studied.

Poisson's ratios generally increase with fiber misaligment and volume

fraction changes.



The coefficients of thermal expansion (Figs. 35, 36) for the sample
studied reflect the longitudinal contraction of graphite fibers vﬁen
heated. The longitudinal coefficient of thermal expansion for
AS—graphite fiber is -0.550 x 10 ¢/ F, vhile the transverse coefficient
is 0.560 x 1@ 5/ F. The offset orientation of crystal lattice planes
in graphite fibers can explain this behavior. These values, the fiber
misalignment, and fiber volume ratio near 0.5 all contribute to the
occurrence of a negative longitudinal coefficient of therml expansion
for the composite. At higher fiber volume ratios, the values calculated
would be less than in the present case, because of the contolling fiber
behavior for high fiber volume ratio.

The longitudinal strengths (Fig. 38, 39) are significantly reduced
when nonuniformities are present. The deterministic case 1 value of 203
ksi. for tensile strength is conpared to a mean near 160 ksi for case 2
and a mean near 13 for case 3. In conpression, the deterministic value
of 165 ksi. compares to means near 1@ ksi. and 80 ksi. for the narrow
and wide distributions, respectively. The failure mode in compression
varies in the random sanples.

Transverse strengths (Fig. 40, 41) show sensitivity to the
variations assumed. Misalignments, volume fraction nonumniformities, and
constituent strength variations all contibute to reduction in the
strength values. Sub-ply shear failures occur, which undermine the
already low transverse composite strengths.

In plane shear strength (Fig. 42) values decline from 10.01 ksi.

for case | to a mean near 8.0 ksi. for case 2. However, case 3 shows a
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value of a mean near 8.0 also. It appears that the added shear strength
due to fiber misalignment is balanced by the reduced strength due to

variable fiber volume fraction.

C. Confidence Curves
The effects of various shape parameters of fiber strength are shown
in Figs. 43 and 44. The higher weibull distribution shape parameter of

20 produces a narrow distribution of fiber strength values. The

Fig. 43 dempnstrates this for lonitwdinal tensile strength. However,
compressiwve failure (Fig. 44) is a nore complex phenowenon. In the
region of low fiber volume ratio, the 'rule of mixtures’ failure
criteria for a subply can control the failure mode. At higher fiber
volwe ratio, however, compressive failure can be initjated by
delamination, or by a shear failure in a sub-ply. The mixture of
failure modes in compressive failure is not well understood, but can
explain the seeming inconsistency of the intersection of the curves in
Fig. 44. At a fiber volume of 0.7, the weakest fibers (¢ = 10) are in
the strongest composite, when strength is normlized with respect to
fiber compressive strength.

The effects of various shape parameters for matrix strengths are
studied in Figs. 45, 46, and §7. Transverse tensile and conpressive
strengths show expected reductions for lower matrix strengths. In-plane
shear strength shows lower dispersion at a large fiber volume of 0.7,

and also declines in general for higher fiber wolune.
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The fiber misalignment effects are studied in Figs. 48-57.
Longitudinal modulus (Fig. 48) shows narrow intervals and slight
reductions for greater misalignment. Transverse modulus (Fig. 49) and
in plane shear modulus (Fig. 5?) are enhanced by fiber misalignment.
longitudinal tensile and compressive strengths are degraded by
misalignment (Figs. Si, 52). Transverse tensile and conpressive
strengths are enhanced (Figs. 53, 54). In-plane shear strength shows
total separation of confidence intervals between curves with different
degrees of misalignment. Poisson's ratios (Figs. 56, 37) increase for
high fiber misalignment values.

The fiber stiffness effects (Figs. 38-67) are very small for the

distribution parameters studied.

D. Examination of Regression Models

The regression models for thermpelastic properties dembnstrate
resonably high predictive capability in the simple models assumed.
Marginal improvements are achieved in expanding the models to include
higher order interaction terms. Further improvement is gained by using
sample data from the wide range of volume percent values. The higher
multiple correlation coefficients of these models my be due to the
additional information available in the sample size of 100 that was
used. The nearly singular predictor matrices vhich occur in the higher
order models indicate that terms must by selectively removed to
eliminate linearity between assumed predictor terms. The regression

results support the use of the simple wodels for thermoelastic
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properties, because improvenents in predictive capability in the higher
order nodels for the same data are smll].

Strengths are not mdeled well by the simple or the interaction
mdels. The predictors chosen are average properties, whereas the
strengths are based on the weakest points in the mterial. Fuven the
unidirectional cases (N6-N1Q, W6-UW10) present data that the interaction
rmodels have considerable difficulty in accomndating. Somewhat greater
predictive value is gained by using the expanded data for strength model
prediction. Using fourth order algebraic functions, values of the
multiple correlation coefficient square approach 85/ for longitudinal

tensile strength. The other strengths generally have poorer results,



CHAPTER V

CONCLUSIONS

i tractable, constjituent based, probabilistic analysis procedure
for fiber composites has been developed using the ICAN program as a
basis. Within the limitations of the mechanics of material model,
properties and strengths of a variety of composite material
conf igurations can be simulated.

This study quantifies the thermoelastic and strength properties of
a graphite/epoxy ply subject to assumed uncertainties for fiber
misalignment, constituent volume fractions, and constituent properties.
The results show several advantages of probabilistic characterization of
this material. These include the identification of unforseen variations
in composite material properties, and the wechanical effects of local
nonuniformities. The relative importance of the various fabrication and
material variables on conmposite properties is identified, and the
resulting behavior quantified.

The advantages of a probabilistic formulation of composite material

136
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properties over a deterministic one are numerous. Comparison of‘the
results of this study with test data could reveal some souroces of
previously unaccounted scatter in the data. Expected value ranges could
.be predicted for experimental results, Since the simulations provide
data that is analagous to experimental data at lower cost, laboratory
classification, material selection, and acceptance testing of conposites
can be guided by the information made available by these methods.

Although the method presented provides results for only the basic
Ply, extension of the simulation to include lamination-angle variations
in a general layup is feasible. Since finite element mterial property
cards are generated, structural analysis of components with randomly
varied properties defined at a nunber of points in the body can supply a
more realistic description of the random nature of structural response
due to material inhonmbgeneity.

The stochastic formulation of material properties is generally
recognized as one requirenent of failure theories for materials.
Although the failure criteria in the models used in this study are
conservative, progressive failure of fiber composites could be mode led
by incorporating load redistribution and mterial property recalculation

in the vicinity of failed material.
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This appendix outlines the theories and equations in the ICAN
program that are used in this project. In the first section on
composite micromechanics, the elastic and thermal properties of a
composite ply are defined with respect to its principal material axes.
The next section, devoted to laminate theory, contains the
transformations and summations of ply properties used to arrive at
laminate properties. The last section contains a brief discussion of

the failure criteria.

1. Composite micromechanics

The theory for calculation of the properties of a wnidirectional
fiber composite ply based on the properties, volume fractions, and
orientation of its constituents is known as composite micromechanics.
In this section, the subscripts £, m, v, and I represent fiber, mtrix,
void, and laminate, respectively. The symbolic notation and the
equations used are summarized below:

Volune fractions:

kf + km + kv =1
longitudinal Modulus:
Brin = ReBpyy * kE,

Transverse Modulus:
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E
m
E = E =
122 133
1= (1 -E/E.,)
Shear Moduli:
G
m
G2 =
1 - “if (1 - 6,76, )
G
m
G =
123
1 - \/EF (1 -6,/6,,.)
Poisson’s Ratigs:
“112 = V113 T Vp * Relvg o, - v )
Vi12
“raz = Rp Vpp3 t kot 20 - E,, Ei22

Coefficients of thermal expansion

%1y * R {aE ELL) - %ey1]
a =
11
1+ km(Em/Efll - 1)
L+kowE,
a a (1 -k ) - +ta. .k
122 ' £ Eryy * %, (E, - E, ) £22%¢

122
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2. Laminate Theory
This section describes the methods vhich are used to calculate the

elastic properties of laminates from the properties, orientation, and

.distributi.on of individual laminae. The elastic properties are then

used to predict the response of the laminate to external loads. The
methods used to predict stresses in the laminae under application of
external loads are also described. Failure loads can be predicted by

using these methods; as described in a following section.

a. Gereralized Hooke's Law

The stresses acting at a point in a solid can be represented by the
stresses acting on the pPlanes normal to the coordinate directions, or
equivalently, on the surfaces of an infinitesimal cube as shown in Fig.
B-1. The stresses (oi,j) on each face are resolved into three
components: one normal stress and two shearing stresses. The first
subscript refers to the direction normel to the plane in which the
stress acts and the second subscript to the direction in which the
stress acts. The stress components shown on the faces of the cube are
taken as positive and can be taken as the forces (per unit area) exerted
by the material outside the cube upon the material inside. A stress
component is positive if it acts in the positive direction on a positive
face of the cube. Thus normal tensile stresses are positive, and normal
compressive stresses are negative. Nine stress conmponents must be used
to define the state of stress at a point, namely o“, Oyqs 0341 a0

631, 012, 032, 013, and 021. There are nine corresponding strain
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components, following the same subscript convention.
For bodies in which each strain component is a linear function of
all six stress components, the generalized Hooke's Law can be expressed

% = Eijui k1

where Eijkl is a fourth order tensor of elastic constants. For nine

stress components and nine strain components, there must be 81 elastic

constants defining Ei,j Certain reductions in the number of

kl®
independent constants for an anisotropic body are due to symetry

By considering wowent equilibrium about

properties of the tensor Ei,jkl'
the center of the cube, it can be shouwn that at any point Oy = Onqs
Oy = 013, and 012 = 021. Thus, Eijkl 1s symmetric with respect to the

first two indices. Second, because the strains are symmetric (that is,
Ei.j = EJ.i), Ei,jkl must be symmetric with respect to the second two

indices. This reduces the mmber of elastic constants to 36. Further
reduction to the final 2! elastic constants for a general anisotropic

material is accomplished by assuming the existence of a strain energy

density function, such that

U= U(Eij)
with the property

oau

asij ij

From the generalized Hocke'’s lLaw,

au
3. . - Eijki%k
ij

Partial differentiation with respect to £l yields
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3 [au] = E
as“ as“ ijkl

Since the order of partial differentiation is immterial,

- [421_ - 9 LJZL_
as“ asi‘j 65” askl

and the subscripts can be interchanged to yield

a [auJ _
aEkl Bsi.j Eklx,)

so that
Eik1 = i

Thus the first pair of subscripts in Eijkl can be inte;‘charxged with the
second pair without any change in the values. The number of elastic
constants is thus reduced to 21.

b. Lamina Constitutive Relation

Several simplifications to the generalized Hooke's Law can be made
for the special case of a thin orthotropic material, which approximtes
a unidirectional fiber conposite lamina. By considering the invarjance
of elastic properties under coordinate transformation for planes of
symmetry, the tensor Eijkl can be reduced to the following nine
constants:

fEllll E1122 E1133

E1122 E:2222 E2233

E.. = | B33 Ejp33 Eggas
1jkl _

° |

It is now convenient to make the following notation changes:
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[+4 =0 e = £

11 1 11 1
92 = 9, €22 = &,
%33 = %5 €33 = &3
%23 = Ty3 = 9, 283 = Yyy = ¢,
913 = Ty3 = 95 %243 = Y3 =&
%12 = Typ = 9 25 =7, =5

The generalized form of Hooke's Law can now be written
6
o, = C.e. for 1,j=1,...,6

je1 W

The matrix Ci,j is known as the stiffness matrix, ant:!.s‘j are the

engineering strain components. In matrix form Hooke's Law is written

[ o, [ €y C4 €3 2 o o £
% €12 €35 €3 © o o )
% | |3 € C3 @ o o £3
L "l e o o Cay @ © -
Tay © o e o c._ o Yo,
T2 | © © o o o c. J | "2 |

where the coordinate axes coincide with the symretry axis of the
mﬁerial. For laminae that are assumed suf ficiently thin, the through
the thickness stresses are zero. Thus o, = G4 = Og = @, for plane
stress. It is apparent that £q = Eg= %]

The stress strain relations for a thin unidirectional lamina are

witten
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2 © £

o Q1 9

% | = |2 Qp © 2

Ti2 ° e Wee! LT v,
1

using the tensorial strain ¥ 112 instead of the engineering strain v

- N

12°
The Q terms are known as reduced stiffnesses, i.e.

E,
Qll = Cll - 1 - VizV3y

v;2E, vy, E;
le = C12 = 1 - V3z2V23 = 1 - ViaVag
E;
Q2 =Cpp =1 Vi2Y2:

1

Qe = 7 (€13 = €15) = 65
where E;, E;, v;3, vs2,, and G,, are the ply elastic constants, measured
with respect to the natural material system. It may be noted that only
four of these constants are independent.

The stress- strain relation above shows that there is no coupling
between tensile and shear strains, as long as the applied stresses are
coincident with the principal material directions. However, coupling
appears when a lamina is tested at arbitrary angles with respect to the
principal material directions. The general form of the stress-strain
relation for any angular orientation of a lamina is considered next.

c. Stiffness matrix transformations

f lamina is loaded along a coordinate system x-y oriented at some
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angle & with respect to the principal material directions as shown in

Fig. B-2. Since stress and strain are second order tensors, fhey are

transformed by

%y %y
02 = [T] O’y
T, Txy
and
51 Ex
52 = [T] Ey .
1 1
T ’112 ¥ ’lxy

where [T] is the transformation matrix for pPlane stress and plane strain

transformed by clockwise rotation about the (3,2z) axes, given by

cos?g sin?g 2 sinf cos#
[T] = sin?g cos28 -2 sinf cosg

~sinf cosf® sinf cos® cos?8 - sinlg

Inversion and substitution yields

-1
o, [ = [TI7'[QIIT] lf, ’
TKY r‘lxy

which is the stress strain relation for a lamina referred to arbitrary

axes. For simplicity, the notation [ Q ] is introduced
= -1
[ = (117" [Ql[T)
vhere [Q] is called the transformed reduced stiffness matrix.

Using the approach outlined above, it is possible to obtain
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expressions for the elastic properties referred to the X~y coordinate
system.

d. Elastic properties of laminates

A nuwber of assunptions are made in laminate theory to obtain

theoretical predictions. These are:

1. the lamina are perfectly bonded and do not slip relative to
each other

2. the bond between the laminae is infinitesimally thin

3. the laminate has the properties of a thin sheet

These assumptions allow the laminate to be treateci as a thin
elastic plate. The classical hypothesis of Rirchhoff is applied to
derive the strain distribution throughout the plate under external
forces. Because the laminate is composed of laminae oriented in
different directions with respect to each other, the stress-strain
equation for each layer (k) is defined as
¢ %y 9 Qe €

X X

% = 612 522 626 . £y
Txy Ik Qe 9 e i lz Y sy
Thus for a given strain distribution, the stress in each layer can be
determined. The strain at any point in a laminate undergoing
deformation must be related to the displacements and curvatures of its
midplane. The discussion which follows assumes that the laminate ijs
thin. EKirchhoff Plate theory is used in this formulatiaon,

The deformation of an arbitrary section of a laminate is shown in

Fig. B-3. It is assumed that lines straight and perpendicular to the
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midplane before deformation remain so after deformation. This is
equivalent to neglecting transverse shearing deformmtions. Comparing
Fig. B-4(b) with Fig. B-4(a), in vhich the normals to the midplane
‘renain perpendicular after deformaticn, it is seen that the upper and

lower surfaces of the plate must not shift their relative positions. It

It is assumed that the point B at the midplane undergoes
displacements Uoy Yo, and w; along the X, ¥, and z axes, respectively,
The displacement u in the X direction of a point C located on the normal
ABCD at a distance z from the midplane is given by

u

Upg - Za
where a is the slope of the midplane in the X direction,
Bvrg
ax
The last two equations can be used to obtain the displacenent u of an

arbitrary point at a distance z from the midplane as

Owy
U = Ug — 2 ox
Similarly,
aWo
U =vyy -z 3y

Since the strains normal to the midplane are neglected (plane
strain), the displacement w at any point is taken equal to the

displacement w, at the midplane. The strains in terms of displacement u
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du du, 92wy
fx T0x “ox " % ox*

v 3, 32w,
Yy & " T

du 3v 3u, av, 3w,
yxy=6—;;+a=ay +ax -2szay

In terms of midplane strains and plate curvatures, the strains in a

laminate vary linearly through the thickness,

£ g° k
X X X
£ = €0 +2z ]k
y y y
% v° k i
xy Xy Xy
where midplane strains are given by
o [ du,
Ex Jx
duy
£° = -
y oy
du, Bv,
0 _—  —
Ty | 3y " ax
and the plate curvatures by
[ az‘Jo
kx Ix?
62W°
k = - v,
y oy
aIWo
k
Xy | oxdy |

The stresses in any (k) lamina can be obtained by substituting the

previous equation into the stress strain equation

Oy O Q2 9 £ Ky,
% = | 9 9y Q o lrz]%
Tyy Ik e %e % Il Y Ry

y
o
xy
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e. Laminate Stiffness Matrix

Classical laminate theory provides a method of oalculating the
resultant forces and moments per unit length acting on the laminate by
' integrating the stresses acting in each lamina through the thickness (h)

of the laminate. Resultant forces are obtained by

[ h/2
Nx = Ox dz
J -hr/2
[ h/2
NY = Oy dz -
J -h/2
[ hr/2
N = T dz

The wmoment resultants are obtained by integration through the thickness

of the corresponding moments of stresses about the midplane:

h/2
Plx = a,“ z dz
J ~h/2
[ h/2
M = c z dz
y -h/2 y
[ h/2
M = T z dz
’fy d _h/2 xy

The units of Nx’ Ny, ny are force per unit length and Hx, Hy, ny are
roment per unit length. The sign conventions are shown in Fig. B-S.
Using the resultant force and moment relations, a system is defined

that is statically equivalent to the laminate stress system, but applied
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at the midplane. Thus, the external loading has been reduced to a

system that does not contain the laminate thickness or z coordinate
explicitly.

For a laminate consisting of n laminae (Fig. B-6), the resultant
force-noment system acting at the midplane can be obtained by adding

integrals representing the contribution of each layer by

Nx o, n [ o,
h/2
Ny = J oy dz = } J hk oy dz
~h/2 k=1 J Ppy
N T T |
Xy _xy 'k
Hx %y n { ax
h/2
ny = J cry zdz = } J hk ay =z dz
-h/2 k=t hk- 1
M T T J
Xy Xy xy ‘k

Using the expressions for the stresses in the k-th lamina derived
earlier, and noting that the midplane strains and plate curvatures are
constant not only within the lamina, but for all laminae, it is apparent
that they can be taken outside the integral sign. The stiffness matrix
[Q] is constant within a lamina so it also can be taken outside the

integration to give

N [ n [ Qu 9 Q6 5
l“y I = 2 Q2 9 9 Jhk dz ‘;
Ny e, Us %e Iy et Yy
n [ Q1 Q2 g h Ky
* } 9z Qp O J et I I
[‘l=1 616 6:zs 666 k et kxy



" n | % 9y 9
n, = } Qa 9y 9 J K z dz
My o Q Qg 9 I, e s
n [ %y 95 9 ey
1Y (o 3y, 6 J o
ket Us s 9 I et Ky
Three new matrices, ai,j’ Bi,j’ and Di,j’ are defined, where

ﬁij = } ( 6ij)k (hy - hy)
k=1

( 513)1« (g - By _,)

w
[
[
i
N[ -
e
[ =

{ 5ij)k (hg - B2 )

(9
G
I
wl -
ﬁ
]
NS
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These new matrices, A, B, and D, simplify the resultant force and noment

relations, and are known as the extensional, coupling, and bending

stiffness matrices, respectively. The total plate constitutive equation

is then

5] 12 5117

It my be recalled that in an orthotropic lamina with arbitrary

orientation the shear stress is coupled with the normal strain and the

normal stresses are coupled with the shear strain. 1In general, a

resultant shearing force on a laminated plate produces midplane normal

strains in addition to the expected shearing strain. Similarly, a
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resultant normal force will induce shear strains in addition to midplane
normal strains.

The nonzero coupling matrix B in the plate constitutive equation
-explains the coupling between bending and extension of the laminated
plate. Thus, normal and shear forces at the midplane induce not only
midplane deformations, (and hence, midplane strains) but also twisting
and bending, producing plate curvatures. Similarly, resultant bending
and twisting woments induce midplane strains.

f. Lamina stresses and strains .

The aim of the analysis of a laminated composite is to determine
the stresses ard strains in each of the laminae forming the laminate.
These stresses and strains are used with failure criteria to predict the
loads for failure initiation for a laminate. The failwre criteria are
discussed in the section devoted specifically to that purpose.

The strains in a lamina caused by external loading are a function
of laminate midplane strains and plate curvatures, as previously
discussed. Once the lamina strains are known, lamina stresses can be
found using the lamina stress-strain law. Thus, the starting point for
calculating lamina stresses is the determination of laminate midplane
strains and plate curvatures in terms of the applied loading. The plate
constitutive equation given previously can be inverted to give the
midplane strains and plate curvatures explicitly in terms of the

resultant external forces and noments. The result of the inversion

process is
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&° A' B N A’ B N
k) = c* D’ M) = B' D’ M
where A’, B’, and D’ are simplified forms of the inversion process
.results, and are functions of the A, B, and D mtrices of the original
form of the plate constitutive equation.
It is now apparent that with these equations, an analysis of a
laminate subjected to external forces and rmoments can be conducted:
1. calculate midplane strains and Plate curvatures
g0 A' B’ N
k| = B* D’ M .
2. calculate lamina stresses in global (x-y) system

o 0
%x Qll Q.12 Q16 x kx
- 5 5 ) 0
oy - Q12 Q22 Q26 Ey te ky
O 5 5 )
Tyy K %6 %6 %e i ll vy, Ky
3. calculate lamina stresses in natural (longitudinal and

transverse to fiber) svstem.

ol ox
02 = [ T] ay
T, 2 Txy

The strain variations in a lamina are calculated in an analagous
manner. The stress-strain variation is compared with the allowable
stresses and strains in each lamina. Thus the load at which failure is
initiated in one of the lamina can be calculated, as long as a strength
criteria exists in terms of the lamina natural axis system. The

formulation of lamina failure criteria is discussed in the next section.
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3. Strength Theories

It is assumed that the strength of a laminate must be related to

the strengths of the individual laminae. Af simple failure criteria

the lamina. In this context, it is assumed that the lamina and its
constituents behave in a linear elastic manner to failure. The strength
analysis described here assumes that the behavior of each lamina in an
arbitrary laminate ijs the same as the behavior observec_l in the natural
axis system when the lamina is part of any other laminate under the same
stresses or strains. In other words, it is assumed that the strength
criteria for a lamina in Plane stress is valid for any orientation of
the lamina jn a laminate. In the ICAN program, the lamina strengths are
calculated using the expressions given below.

Iongitudinal tension

St = Spp (ke + knfn’Ee11)

Longitudinal conpression:

The longitudinal compressive strength must be computed on the basis
of three different criterija:

a. rule of mixtures

S111c = Spc (kg *+ K E /E )

b. delamination

Sric = (138, + 5.



c. fiber microbuckling
F’Z om

S =
1€ 1 -k (1 - G,/Gpr)

Transverse tension

S gor = Spy(FACT/DENON)

Transverse conmpression

SI22C=SmC/m

Transverse shear

[(F, - 1+ G /G 5)F; Gpya S5 )

Si12 = G F FACT
m 1

vhere F‘1 and F2 are given by

L]
[y
"
P
2 2

The variable DENOM is introduced for convenience:

pexort = [1 - A (1 - E /Eg,)] 1+ PP - 1) + /5(P-1)°

vhere ¥ is given by

E
m

F -
1 Eq o[l - k(1 - E /E;5)]

Fl—l
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The variable FACT is used to correlate the strengths of HM5 and Kevlar
fiber composites with the experimentally observed values. Since neither

of these fibers is used in this work, FACT takes the value uni ty.
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Fig. B.1- Components of Stress acting
on elemental unit cube.

Fig. B.2- Rotation of coordinates from 1-2 to X-y.
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Fig. B.3- Bending geometry in the x-z plane.
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Fig. B.4-Shearing force deformations on straight cross section.
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Fig. B.5- Plate stress and moment resultants
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